储成才

发布者:华南农业大学发布时间:2024-08-21浏览次数:38

                             

                 


         姓        名:储成才

         技术职称:教授

         职         务:云顶贵宾会员网址院长

         联系电话:86-20-85280967

         邮        箱:ccchu@scau.edu.cn

         实验室主页:http://chulab.genetics.ac.cn


         研究方向:植物养分高效机制解析及分子设计育种

______________________________________________________________________________________________________________________________________________________________________________________________________________

储成才 博士 教授、博士生导师,岭南实验室 研究员


研究领域:

        主要以水稻等为材料,重点研究植物对氮磷养分感知、转运与利用的分子机制,不同养分间互作关系,以及通过遗传学、计算生物学及多维组学等技术,克隆调控植物养分高效利用关键基因,鉴定其优异等位变异,并与育种家合作开展农作物品种的分子设计改良。

 

教育经历:

        1986年   安徽师范大学 学士学位

        1989年   河南师范大学/中国科学院植物研究所 硕士学位

        1996年   德国Martin-Luther大学 博士学位

 

工作经历:

        1989-1993年  河南师范大学生物系 任教 (助教、讲师)

        1996-1998年  德国植物遗传与作物育种研究所 (IPK) 博士后

        1999-2021年  中国科学院遗传发育所 研究员/中国科学院大学 教授

        2021-             华南农业大学 教授/云顶贵宾会员网址院长

                               岭南现代农业科学与技术广东省实验室 研究员

 

奖励荣誉:

 1999年   中国科学院“百人计划”

 2004年   首批新世纪百千万人才工程国家级人选

 2006年   国务院批准享受政府特殊津贴专家

 2008年   国家杰出青年科学基金

 2016年   全国优秀科技工作者

 2016年   中国侨界贡献奖

 2016年   科技部国家创新人才推进计划重点领域创新团队

 2017年   中组部、人社部“万人计划”领军人才

 2017年  《功能基因组学》课程被评为中国科学院大学生命科学学院精品课程

 2019年  《功能基因组学》课程被评为中国科学院大学现代云顶贵宾会员网址优秀课程

 2019年  《功能基因组学》课程被评为中国科学院大学优秀课程

 2019年    Web of Science 高被引科学家

 2020年    Web of Science 高被引科学家

 2021年    Web of Science 高被引科学家

 2021年    中国科学院大学“魏桥国科”校长奖教金


学术服务:

全国科学技术新词委员会委员

国家知识产权局中国专利审查技术专家

中国作物学会分子育种专业委员会副会长

 Committee member of International Society on Pre-Harvest Sprouting in Cereals

《中华科学技术大词典•生物学卷》副主编

《遗传》副主编

《作物学报》副主编

《激光生物学报》副主编

《植物学报》编委

《农业生物技术学报》编委

 Plant Communications 编委

 Rice 编委

 Plant and Cell Physiology编委


主要成就:

秉承“育种家的问题就是科学家的课题”的科研思路,将基础研究和应用实践紧密结合,在水稻营养高效利用及作物分子设计育种等基础及应用基础研究领域取得一系列原创性成果。克隆了控制水稻籼粳亚种间氮肥利用效率差异关键基因NRT1.1B;建立了硝酸盐信号从细胞膜受体感知到细胞核应答响应的主信号通路;揭示了硝酸盐信号通过调控氮磷应答基因实现氮磷营养平衡的分子机制;发现籼稻根系微环境的氮循环比粳稻更活跃,且籼稻型NRT1.1B基因在促进氮循环相关细菌在水稻根系富集、提高有机氮利用及土壤适应性等方面起重要作用;基于实验室研究成果培育出设计型水稻新品种,为“绿色超级稻”(少施化肥、少打农药、提高产量)的培育及其它作物的育种改良提供了成功范例。回国后在包括NatureNature GeneticsNature BiotechnologyNature Plants, Nature CommunicationsGenome ResearchPNASPlant Cell, Molecular Plant 等刊物发表通讯/共同通讯作者论文110篇,总引用15900多次 (Google Scholar 数据)h指数70,连续入选201920202021年度Clarivate Analytics(科睿唯安)“高被引科学家”。多次应邀在Nature PlantsTrends in Plant ScienceCurrent Opinion in Plant BiologyMolecular Plant 等杂志撰写综述、趋势和评论;申请专利70多项,其中国际专利10项,与育种单位合作培育水稻新品种5个,其中秀水114和秀水134累积推广面积1400多万亩。


论文著作:

 I. 代表性论文 (蓝色为第三方评价)

  1. Liu Y#, Wang H#, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B*, and Chu C* (2021) Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590: 600-605.

Highlighted by Wei Li (2021) Adaptation to nitrogen. Nat. Genet. 53: 127.

Spotlighted by Bing Wang and Jiayang Li (2021) Rice geographic adaption to poor soil: novel insight in sustainable agriculture. Mol. Plant. 14: 369-371.

Featured by Alisdair Fernie (2021)Using landrace transcription factor alleles to increase yield in modern rice under low input agricultureJ. Plant Physiol. 258-259: 153362.

Commented by Xianran Li and Jianming Yu (2021) Retrofitting elites with ancestral alleles for sustainable agriculture. Sci. China - Life Sci. 64: 1029-1030.

Mini-reviewed by Fanmiao Wang, Hideki Yashida and Makoto Matsuoka (2021) Making the “Green Revolution” truly green: Improving crop nitrogen use efficiency. Plant Cell Physiol. 62: 942-947.

热点评述宣伟徐国华 (2021). 植物适应土壤氮素环境的基因选择以水稻为例植物学报 56: 1-5.

      Selected by F1000Prime by Jian Feng Ma, Jiming Jiang.

  1. Fang J#*, Zhang F#, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F, Chang S, Wu L, Bu Q, Wang P, Xie J, Chen F, Huang X, Zhang Y, Zhu X, Han B, Deng X*, and Chu C* (2019) Ef-cd locus shortens rice maturity duration without yield penalty. Proc. Natl. Acad. Sci. USA 116: 18717-18722.

Highlighted in in this issue (2019) Rice maturity time and yield. Proc. Natl. Acad. Sci. USA 116: 18149.

Spotlighted by Yang Yu and Qian Qian (2019) Rice breeding: A long noncoding locus with great potential. Mol. Plant 12: 1431-1433.

热点评述:张硕吴昌银 (2019) 长链非编码RNA基因Ef-cd调控水稻早熟与稳产.植物学报 54: 550-553.

  1. Zhang J#, Liu Y-X#, Zhang N#, Hu B#, Jin T#, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C*, and Bai Y* (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37: 676-684.【高被引论文】

Cover story.

热点评述:王孝林王二涛 (2019)  根际微生物促进水稻氮利用的机制植物学报 54: 285-287.

  1.  Hu B#*, Jiang Z#, Wang W#, Qiu Y#, Zhang Z, Liu Y, Gao X, Liu L, Qian Y, Huang X, Yu F, Li A, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, and Chu C* (2019) Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants. Nat. Plants 5: 401-413.【高被引论文】

Featured by César Poza-Carrión & Javier Paz-Ares (2019) When nitrate and phosphate sensors meet. Nat. Plants5: 339–340.

Selected in F1000Prime by Prof. Jian Feng Ma. doi: 10.3410/f.735399180.793560575, and Prof. Shuhua Yang on 29 May 2019; doi: 10.3410/f.735399180.793560581.

  1.  Wang W#, Hu B#, Yuan D, Liu Y, Che R, Hu Y, Ou S, Zhang Z, Wang H, Li H, Jiang Z, Zhang Z, Gao X, Qiu Y, Meng X, Liu Y, Bai Y, Liang Y, Wang Y, Zhang L, Li L, Sodmergen, Jing H, Li J, and Chu C(2018) Expression of the nitrate transporter OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 30: 638-651.【高被引论文】

Commented by Jennifer Mach (2018) The real yield deal? nitrate transporter expression boosts yield and accelerates maturation. Plant Cell 30: 520-521.

Highlighted in Science Daily on February 23, 2018 by Jennifer Mach: New approach to improve nitrogen use, enhance yield, and promote flowering in rice.

Selected by F1000Prime doi: 10.3410/f.732773314.793543251.

  1.  Wang H, Xu X, Vieira FG, Xiao Y, Li Z, Wang J, Nielsen R*, and Chu C* (2016) The power of inbreeding: NGS based GWAS of rice reveals convergent evolution during rice domestication. Mol. Plant 9: 975-985.

Cover Story.

Featured by Xuehui Huang (2016) From genetic mapping to molecular breeding: Genomics have paved the highway. Mol. Plant 9: 959-960.

  1.  Che R#, Tong H#, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M*, and Chu C* (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2: 15195.【高被引论文】

Featured by Hirokazu Tsukaya (2015) Yield increase: GRFs provide the key. Nat. Plants 2: 15210.

热点评述:刘玲童王台 (2016) miR396-GRF模块水稻分子育种的新资源植物学报 51: 148-151.

  1.  Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, and Chu C* (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47: 834-838.

Featured by Dai-Yin Chao & Hong-Xuan Lin (2015) Nitrogen-use efficiency: Transport solution in rice variations. Nat. Plants 1: 15096.

Highlighted by Chen ZC & Ma JF (2015)Improving nitrogen use efficiency in rice through enhancing root nitrate uptake mediated by a nitrate transporter, NRT1.1B. J. Genet. Genomics 42: 463-465

Highlighted by Duan D & Zhang H (2015) A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice. Sci. China Life Sci. 58: 827-828.

Selected for F1000Prime. doi: 10.3410/f.725540326.793508312.

  1.  Liang C#, Wang Y#, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, and Chu C* (2014) OsNAP connects abscisic acid and leaf senescence by fine tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl. Acad. Sci. U S A 111: 10013-10018.【高被引论文】

Selected for F1000Prime. doi: 10.3410/f.718460121.793520007.

  1.  Tong H#, Xiao Y#, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, and Chu C* (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26: 4376-4393.【高被引论文】

Commented by Nancy R. Hofmann (2015) Taking hormone crosstalk to a new level: Brassinosteroids regulate gibberellin biosynthesisPlant Cell 25: 2081.


 II. 通讯/共同通讯文章

  1.  Liu X, Hu B, Chu C (2022) Nitrogen Assimilation in Plants: Current Status and Future Prospects. J. Genet. Genomics.

  2.  Liu D#, Zhao H#, Xiao Y, Zhang G, Cao S, Yin W, Qian Y, Yin Y, Zhang J, Chen S, Chu C*, Tong H* (2022) A cryptic inhibitor of cytokinin phosphorelay controls grain size. Mol. Plant doi: 10.1016/j.molp.2021.09.010.

Spotlighted by Tomáš Werner and Thomas Schmülling (2021). PPKL1 moonlights the role of cytokinin in regulating rice grain size. Mol. Plant doi: 10.1016/j.molp.2021.11.014.

  1. Che R, Hu B, Wang W, Xiao Y, Liu D, Yin W, Tong H*Chu C(2022) POLLEN STERILITY, a Novel Suppressor of Cell Division, is Required for Timely Tapetal Programmed Cell Death in Rice. Sci. China – Life Sci. doi: 10.1007/s11427-021-2011-2.

  2.  Tian X, Xia X, Xu D, Liu YXie L, Hassan MA, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C*, He Z*, Cao S*(2022) Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol. 233(2): 738-750.

  3.  Liu D#, Yu Z#, Zhang G#, Yin W, Li L, Niu M, Meng W, Zhang X, Dong N, Liu J, Yang Z, Wang S*Chu C*, Tong H*(2021)Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice. Plant Physiol. 187(4): 2563-2576.

  4. Chu C (2021)Editorial Feature: Meet the PCP Editor - Chengcai Chu. Plant Cell Physiol. 62(6): 923-925.

  5. Xu Y, Chu C*, and Yao S* (2021) The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 9: 963-976.

  6. Wang W, Zhang Z, Li A, and Chu C* (2021) Post-translational modifications: regulation of nitrogen utilization and signaling. Plant Cell Physiol62(4): 543-552(Invited Review)

  7. Sun C*#, Zhang K#, Zhou Y#, Xiang L, He C, Zhong C, Li K, Wang Q#, Yang C#, Wang Q, Chen C, Chen D, Wang Y, Liu C, Yang B, Wu H, Chen X, Li W, Wang J, Xu P, Wang P, Fang J, Chu C*, Deng X(2021) Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice. Plant Biotechnol. J. 19: 1644-1657.

  8. Li Q, Xu F, Chen Z, Teng Z, Sun K, Li X, Yu J, Zhang G, Liang Y, Huang X, Du L, Qian Y, Wang Y, Chu C*, Tang J(2021) Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nat. Plants 7: 1108–1118.

  9. Yu Y#, Yu J#, Wang Q#, Wang J, Zhao G, Wu H, Zhu Y, Chu C*, Fang J*(2021) Overexpression of the rice ORANGE gene OsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice. Plant Sci.310: 110962.

  10. Li G, Tang J, Zheng J*, and Chu C* (2021) Exploration of rice yield potential: Decoding agronomic and physiological traits. Crop J. 9(3): 577-589.

  11. Wang X#, Feng C#, Tian L#, Hou C, Tian W, Hu B, Zhang Q, Ren Z, Niu Q, Song J, Kong D, Liu L, He Y, Ma L, Chu C*, Luan S*, Li L* (2021) A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis. Mol. Plant 14(5): 774-786.

Spotlighted by Cheng-Wu Liu* and Shutang Tan (2021) Nitrate signaling: A translator between nitrate perception and calcium signaling.Mol. Plant14: 774-786.

      Selected by F1000Prime by Gabriel Krouk. doi: 10.3410/f.739577783.793589636.

  1. Li A, Hu B, and Chu C* (2021) Epigenetic regulation of nitrogen and phosphorus responses in plants. J. Plant Physiol.258-259: 153363. (Invited Review)

  2.  Zhang Z#, Li Z#, Wang W, Jiang Z, Guo L, Wang X, Qian Y, Huang X, Liu Y, Liu X, Qiu Y, Li A, Yan Y, Xie J, Kopriva S, Li L, Kong F, Li B, Wang Y, Hu B*, and Chu C* (2021)Modulation of Nitrate-Induced Phosphate Response by the MYB Transcription Factor RLI1/HINGE1 in the Nucleus. Mol. Plant 14(3): 517-529.

  3.  Gao S and Chu C* (2020) Gibberellin metabolism and signalling: targets for improving agronomic performance of crops. Plant Cell Physiol61(11): 1902-1911. (Invited Review)

Cover story.

  1. Qu M, Jemaa E, Xu J, Ablat G, Perveen S, Wang H, Chen K, Yang Z, Chen G*, Chu C*, and Zhu X* (2020) Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditionsPlant J. 104(5): 1334-1347.

  2. Xu Y#, Zhang L#, Ou S, Wang R, Wang Y, Chu C*, and Yao S* (2020) Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat. Commun.11: 5441.

  3.  Tang J* and Chu C* (2020) Strigolactone signaling: Repressor proteins are transcription factors. Trends Plant Sci. 25(10): 960-963. (Invited Review)

  4.  Wang W, Hu B, Li A, and Chu C* (2020) NRT1.1s in plants: functions beyond nitrate transport. J. Exp. Bot. 71(15): 4373-4379. (Invited Review)

Cover story.

  1.  Wang Y and Chu C* (2020) S-Nitrosylation control of ROS and RNS homeostasis in plants: the switching function of catalase. Mol. Plant 13: 946-948.

  2. Xiao Y#, Zhang G#, Liu D, Niu M, Tong H*, and Chu C* (2020) GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. Plant J.102: 1187-1201.

  3.  Wang Y#, Liang C#, Wu S, Jian G, Zhang X, Zhang H, Tang J, Li J, Jiao G, Li F, and Chu C* (2020) Vascular-specific expression of Gastrodia antifungal protein gene significantly enhanced cotton Verticillium wilt resistance. Plant Biotechnol. J. 18(7): 1498-1500.

  4.  Zhang Z, Gao S, and Chu C* (2020) Improvement of nutrient use efficiency in rice: Current toolbox and future perspectives. Theor. Appl. Genet.133(5): 1365-1384. (Invited Review)

  5.  Zhang Z, Hu B, and Chu C* (2020) Towards understanding the hierarchical nitrogen signalling network in plantsCurr. Opin. Plant Biol. 55: 60-66. (Invited Review)

  6. Hu B* and Chu C* (2020) Nitrogen-phosphorus interplay: old story with molecular tale. New Phytol. 225(4): 1455-1460. (Invited Review)

  7. Zhang Z and Chu C* (2020) Nitrogen-use divergence between indica and japonica rice: Variation at nitrate assimilation. Mol. Plant13(1): 6-7.

  8. Xu F, Tang J, Gao S, Cheng X, Du L, Fang J and Chu C* (2019) Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Plant J. 100(5):1036-1051.

  9. Tang J, Wang Y, Yin W, Dong G, Sun K, Teng Z, Wu X, Wang S, Qian Y, Pan X, Qian Q*, and Chu C* (2019) Mutation of a nucleotide-binding leucine-rich repeat immune receptor-type protein disrupts immunity to bacterial blight. Plant Physiol.181(3): 1295-1313.

  10. Gao S, Xiao Y, Xu F, Gao X, Cao S, Zhang F, Wang G, Sanders D, and Chu C* (2019) Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice. New Phytol. 224(1): 202-215.

  11.  Liu C, Schläppi M, Mao B, Wang W, Wang A, Chu C* (2019) The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol. J. 17: 1834-1849.

  12.  Zhang L#*, Hu B#, Deng K, Gao X, Sun G, Zhang Z, Li P, Wang W, Li H, Li L, Yu F, Li Y, Chu C* (2019) NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnol. J. 17(6): 1058-1068.

  13.  Xiao Y, Liu D, Zhang G, Gao S, Liu L, Xu F, Che R, Tong H*, Chu C* (2019) Big Grain3, encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. J. Integr. Plant Biol. 61(5): 581-597.

  14. Hamdani S, Wang H, Zheng G, Perveen SH, Qu M, Khan N, Khan W, Jiang J, Li M, Liu X, Zhu X, Govindjee, Chu C*, Zhu X* (2019) Genome-wide association study identifies variation of glucosidase being linked to natural variation of the maximal quantum yield of photosystem II. Physiol. Plant. 166: 105-119.

  15.  Tong H and Chu C* (2018) Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci. 23(11): 1016-1028. (Invited Review)

  16. Wang M#, Li W#, Fang C#, Xu F#, Liu Y#, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson SC*, Chu C* & Tian Z* (2018) Parallel selection on a dormancy gene during domestication of crops from multiple familiesNat. Genet. 50(10): 1435-1441.

Featured by Rendón-Anaya M and Herrera-Estrella A (2018)The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome Biol. 19(1): 147.

Highlighted by Xin Wei and Xuehui Huang (2018) Identification of a seed dormancy gene in soybean sheds light on crop domestication. Sci. China-Life Sci. 61(11): 1439-1441.

  1. Liu C#, Ou S#, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi MR, Zhao B, Xiao G, Wang X* and Chu C* (2018) Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. NatCommun. 9(1): 3302.

  2.  Du L#, Xu F#, Fang J#, Gao S, Tang J, Fang S, Wang H, Tong H, Cao S, Zhang F, Chu J, Wang G, Chu C* (2018) Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. Plant J. 95(3): 545-556.

  3.  Zhang J#, Zhang N#, Liu YX#, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Zhang P, Jin T*, Chu C*, Bai Y* (2018) Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci. China-Life Sci. 61(6): 613-621.

Cover Story.

  1.  Gao S and Chu C* (2018) Fine-tuning of Eui1: Breaking the bottleneck in hybrid rice seed production. Mol. Plant 11(5): 643-644.

  2.  Xiao Y, Liu D, Zhang G, Tong H*, Chu C* (2017) Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Front. Plant Sci. 8: 1698.

  3.  Wang H#, Vieira FG#, Crawford JE, Chu C*, and Nielsen R* (2017) Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Res. 27: 1029-1038.

Cover Story.

Highlighted in Asian Scientist Magazine on May 2, 2017: Apparently, Asian wild rice isn’t so wild anymore.

  1. Li H, Hu B, and Chu C* (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice.J. Exp. Bot. 68(10): 2477-2488(Invited Review)

  2. Tang J* and Chu C* (2017) microRNAs in crops: fine-tuners for complex traits. Nat. Plants 3: 17077(Invited Review)

  3.  Zhang B#, Zhang L#, Li F#, Zhang D, Liu X, Wang H, Xu Z, Chu C*, Zhou Y* (2017) Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nat. Plants 3: 17017.

Featured by Scheller HV (2017) Plant cell wall: Never too much acetate. Nat. Plants 3: 17024.

  1.  Hu B* and Chu C* (2017) Node-based transporter: Switching phosphorus distribution. Nat. Plants 3: 17002. (Invited Commentary)

  2.  Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J, Chu C*, Yang J*, and Bu Q* (2017) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J. Genet. Genomics 44(3): 175-178.

  3.  Liang C#, Li A#, Yu H#, Li W, Liang C, Guo S, Zhang R*, Chu C* (2017) Melatonin regulates root architecture by modulating auxin response in rice. Front. Plant Sci. 8: 134.

  4.  Tong H and Chu C* (2017) Physiological analysis of brassinosteroid responses and sensitivity in rice. Methods Mol. Biol. 1564: 23-29.

  5.  Li H, Hu B, Wang W, Zhang Z, Liang Y, Gao X, Li P, Liu Y, Zhang L and Chu C* (2016) Identification of MicroRNAs in Rice Root in Response to Nitrate and Ammonium. J. Genet. Genomics 43: 651-661.

  6.  Wang Y#, Liang C#, Wu S#, Zhang X#, Tang J, Jian G, Jiao G, Li F*Chu C* (2016) Significant Improvement of Cotton Verticillium Wilt Resistance by Manipulating the Expression of Gastrodia Antifungal Proteins. Mol. Plant 9(10): 1436-1439.

  7.  Tong H and Chu C* (2016) Brassinosteroid regulates gibberellin synthesis to promote cell elongation in rice: Critical comments on Ross and Quittenden’s letter. Plant Cell 28(4): 833-835.

  8.  Gao S, Fang J, Xu F, Wang W, and Chu C* (2016) Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell 38(3): 680-695.

Highlighted with Science News on April 1, 2016 by Jennifer A. Lockhart: Feeding the world: Uncovering a key regulator of flower head development in rice.

  1. Chu C* (2015) A new era for crop improvement: From model-guided rationale design to practical engineering. Mol. Plant 8(9): 1299-1301.

  2.  Liu L#, Tong H#, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J*, and Chu C*(2015) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc. Natl. Acad. Sci. U S A 112(35): 11102-11107.

  3.  Xu F#, Fang J#, Ou S, Gao S, Zhang F, Du L, Xiao Y, Wang H, Sun X, Chu J, Wang G, and Chu C* (2015) Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell Environ. 38(4): 800-811.

  4.  Hu B, Wang W, Deng K, Li H, Zhang Z, Zhang L, and Chu C* (2015) microRNA399 is involved in multiple nutrient responses in rice. Front. Plant Sci. 6: 188.

  5.  Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY, and Chu C* (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J. Pineal Res. 59(1): 91-101.

  6.  Liang C and Chu C* (2015) Towards understanding abscisic acid-mediated leaf senescence. Sci. China Life Sci. 58(5): 506-508. (Invited Commentary)

  7. Gao S#, Fang J#, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, and Chu C* (2014) CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiol.165(3): 1035-1046.

  8.  Zhang L#*, Hu B#, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, and Chu C* (2014) OsPT2, a phosphate transporter, is involved in active uptake of selenite in rice. New Phytol. 201(4): 1183-1191.

  9.  Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C*, and Wang X* (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol. Biol. 84(1-2): 19-36.

Selected for F1000 Prime. doi: 10.3410/f.718060410.793520018.

  1.  Sun C, Chen D, Fang J, Wang P, Deng X*, and Chu C* (2014) Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein Cell 5(12): 889-898.

  2.  Liu Y, Fang J, Xu F, Chu J, Yan C, Schläppi M, Wang Y, and Chu C* (2014) Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: A comparison of dormant and non-dormant rice cultivars. J. Genet. Genomics 41(6): 327-338.

  3.  Wang Y, Lin A, Loake GJ, and Chu C* (2013) H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species. J. Integr. Plant Biol. 55(3): 202-208.

  4.  Wang Y, Loake GJ, and Chu C* (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front. Plant Sci. 4: 314. (Invited Review)

  5.  Guo X#, Hou X#, Fang J#, Wei P, Xu B, Chen M, Feng Y, and Chu C* (2013) The rice GERMINATION DEFECTIVE1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. Plant J. 75(3): 403-416.

  6.  Sun C#, Fang J#, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X, and Chu C* (2012) The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1, and promotes flowering in rice. Plant Cell 24(8): 3235-3247.

  7.  Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, and Chu C* (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24(6): 2562–2577.

  8. Wu HJ#, Zhang Z#, Wang JY#, Oh DH#, Dassanayake M#, Liu B#, Huang Q#, Sun HX, Xia R, Wu Y, Wang Y, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J*Chu C*, Chen SY*, Bohnert HJ, Zhu J-K*, Wang XJ* and Xie Q* (2012) Insights into salt tolerance from the genome of Thellungiella salsugineaProc. Natl. Acad. Sci. U S A 109(30): 12219- 12224.

Cover story.

Highlighted in Nature Middle East on July 12, 2012 by Moheb Costandi: “Genome sequencing reveals a plant's adaptation to extreme conditions.”

  1.  Tong H and Chu C* (2012) Brassinosteroid signaling and application in rice. J. Genet. Genomics 39(1): 3-9.

  2.  Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C*, and Li C* (2012) Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS ONE 7(11): e50089.

  3.  Lin A#, Wang Y#, Tang J#, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, and Chu C* (2012) Nitric oxide and protein s-nitrosylation are integral to hydrogen peroxide induced leaf cell death in rice. Plant Physiol. 158: 451-464.

  4.  Wang H, Fang J, Liang C, He M, Li Q, and Chu C* (2011) Computation-assisted SiteFinding-PCR for isolating flanking sequence tags in rice. BioTechniques 51: 421-423.

  5.  Yang Z and Chu C* (2011) Towards understanding plant response to heavy metal stress. In: Abiotic Stress in Plants - Mechanisms and Adaptations, Venkateswarlu B and Shanker AK (Ed.). p59-78.

  6.  Li C, Wang Y, Liu L, Hu Y, Zhang F, Sodmergen, Wang G, Schläppi MR, and Chu C* (2011) A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet. 7(7): e1002196.

  7.  Tang J#, Zhu X#, Wang Y, Liu L, Xu B, Li F, Fang J, and Chu C* (2011) Semidominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J. 66: 996-1007.

  8.  Hu B and Chu C* (2011) Phosphate starvation signaling in rice. Plant Sig. Behav. 6(7): 927-929.

  9.  Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, and Chu C* (2011) LEAF TIP NECROSIS1 plays a pivotal role in regulation of multiple phosphate starvation responses in rice. Plant Physiol. 156: 1101-1115.

  10.  Sun C#, Liu L#, Tang J, Lin A, Zhang F, Fang J, Zhang G*, and Chu C*(2011) RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J. Genet. Genomics 38(1): 29-37.

  11. Chai C#, Fang J#, Liu Y, Tong H, Gong Y, Wang Y, Liu M, Wang Y, Qian Q, Cheng Z, and Chu C* (2011) ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Mol. Biol. 75(3): 211-221.

  12. Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, and Chu C* (2010) Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res. 20: 838-849.

  13.  Wang Y, Chen C, Loake G, and Chu C* (2010) Nitric oxide: Promoter or suppressor of programmed cell death? Protein Cell 1(2): 133-142. (Invited Review)

  14.  Tong H and Chu C* (2009) Roles of DLT in fine modulation on brassinosteroid response in rice. Plant Sig. Behav. 4 (5): 438 - 439.

  15.  Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, and Chu C* (2009) DWARF AND LOW-TILLERING, a new member of GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J. 58: 803-816.

  16.  Ma Y, Liu L, Zhu C, Sun C, Xu B, Fang F, Tang J, Luo A, Cao S, Li G, Qian Q, Xue Y, and Chu C* (2009) Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system. J. Genet. Genomics 36(5): 267-276.

  17.  Guo X, Wu Y, Wang Y, and Chu C* (2009) OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230: 227-238.

  18.  Yang Z, Wu Y, Li Y, Ling HQ, and Chu C* (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol. Biol. 70(1-2): 219-229.

  19.  Wang Q, Guan Y, Wu Y, Chen H, Chen F, and Chu C* (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol. 67: 589-602.

  20.  Fang J and Chu C* (2008) Abscisic acid and the pre-harvest sprouting in cereals. Plant Sig. Behav. 3: 1046-1048.

  21.  Fang J#, Chai C#, Qian Q#, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z, and Chu C* (2008)Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J. 54: 177-189.

  22.  Bai X, Wang Q, and Chu C* (2008) Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res. 17: 1035-1043.

  23.  Liu X, Bai X, Wang X, andChu C*(2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J. Plant Physiol. 164: 969-979.

  24.  Ding Y, Wang X, Su L, Zhai J, Cao S, Zhang D, Liu C, Bi YP, Qian Q, Cheng ZK, Chu C*, and Cao X* (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in ricePlant Cell 19: 9-22 (*Corresponding author).

Featured by Priya Prakash Budde (2007) Connecting the dots between histone methylation and DNA methylation. Cell 128(4): 633.

  1.  Luo A#, Qian Q#Ying H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D*and Chu C* (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates the internode elongation by modulating GA responses in rice. Plant Cell Physiol. 47: 181-191.

  2.  Wu Y, Wang Q, Ma Y, and Chu C* (2005) Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Sci.168: 847-853.

  3.  Luo A, Liu L, Tang Z, Bai X, Cao S, and Chu C* (2005) Down-regulation of OsGRF1 gene in rice rhd1 mutant results in reduced heading date. J. Integr. Plant Biol.47: 745-752.

  4.  Liu X, Bai X, Qian Q, Wang X, Chen M, and Chu C* (2005) OsWRKY03, a rice transcription activator that functions in defense signaling pathway upstream of OsNPR1Cell Res.15: 593-603.

  5.  Si L, Cao S, and Chu C* (2003) Isolation of a 1195 bp 5’-flanking region of rice cytosolic fructose-1,6-bisphosphatase and analysis of its expression in transgenic rice. Acta Bot. Sin. 45: 359-364.

  6.  Si L, Wang L, Cao S, and Chu C* (2002) Deletion of a 93 bp 5’ flanking region of rice cytosolic fructose-1,6-bisphosphatase completely altered its expression pattern. Acta Bot. Sin. 44: 1339-1345.

III. 共作者文章

  1. Yu S, Ali J, Zhou S, Ren G, Xie H, Xu J, Yu X, Zhou F, Peng S, Ma L, Yuan D, Li Z, Chen D, Zheng R, Zhao Z, Chu C, You A, Wei Y, Zhu S, Gu Q, He G, Li S, Liu G, Liu C, Zhang C, Xiao J, Luo L, Li Z, and Zhang Q (2022) From Green Super Rice to green agriculture: reaping the promise of functional genomics research. Mol. Plant doi: 10.1016/j.molp.2021.12.001.

  2. Chen R*,Deng Y*, Ding Y*, Guo J*, Qiu J*, Wang B*, Wang CS*, Xie Y*, Zhang Z*, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D#, Liu Y#, Li J# (2021) Rice functional genomics: Decades' efforts and roads ahead. Sci. China- Life Sci. doi: 10.1007/s11427-021-2024-0.

  3. Liu C, Mao B, Yuan D, Chu C, Duan M (2021) Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J. doi: 10.1016/j.cj.2021.02.010.

  4. Gao F, Zhang H, Zhang W, Wang N, Zhang S, Chu C, Liu C (2021) Engineering of the cytosolic form of phosphoglucose isomerase into chloroplasts improves plant photosynthesis and biomass. New Phytol.231(1): 315-325.

  5. Cao S*, Luo X, Xu D, Tian X, Song J, Xia X, Chu C, He Z* (2021) Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice and temperate cereals. New Phytol. 230: 1731-1745.

  6. Yu H*#, Lin T#, Meng X#, Du H#, Zhang J#, Liu G, Chen M, Jing Y, Kou L, Li X, Gao Q, Liang Y, Liu X, Fan Z, Liang Y, Cheng Z, Chen M, Tian Z, Wang Y, Chu C, Zuo J, Wan J, Qian Q, Han B, Zuccolo A, Wing RA, Gao C*, Liang C*, Li J* (2021) A route to de novo domestication of wild allotetraploid rice. Cell 184(5): 1156-1170.

Highlighted by Xin-Guang Zhu and Jian-Kang Zhu (2021). Precision genome editing heralds rapid de novo domestication for new crops. Cell 184: 1133-1134.

Highlighted by Diane R. Wang (2021) Sowing the seeds of multi-genome rice. Nature 591: 537-538.

Commented by Tao Guo and Hong-Xuan Lin (2021) Creating future crops: a revolution for sustainable agriculture. J. Genet. Genomics 48: 97-101.

热点评述:谭禄宾孙传清(2021)四倍体野生稻快速驯化:启动人类新农业文明植物学报 56: 1–4.

热点追踪:许操(2021)01:异源四倍体野生稻从头驯化创造全新作物遗传 43: 199-202.

  1.  Xiao Y, Zhang J, Yu G, Lu X, Mei W, Deng H, Zhang G, Cheng G, Chu C, Tong H*, and Tang W* (2020) Endoplasmic reticulum-localized PURINE PERMEASE1 regulates plant height and grain weight by modulating cytokinin distribution in rice. Front. Plant Sci. 11: 618560.

  2.  Liu X#, Hu Q#, Yan J#, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith SM, Chu J*, Wang Y, Li J, Wang B* (2020) ζ-Carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol. Plant 13: 1784-1801.

  3.  Wu J, Zhang Z-S, Xia J-Q; Alfatih A, Song Y, Huang Y-J, Wan G-Y, Sun L-Q, Tang H, Liu Y, Wang S-M, Zhu Q-S, Qin P, Wang Y, Li S; Mao C, Zhang G-Q, Chu C, Yu L-H, and Xiang C (2021) Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol. J. 19(3): 448-461.

  4.  He Y#, Hong G#, Zhang H, Tan X, Li L, Kong Y, Sang T, Xie K, Li J, Yan F, Wang P, Tong H, Chu C, Chen J* and Sun Z*(2020) OsGSK2 integrates brassinosteroids and jasmonic acid signaling by interacting with OsJAZ4. Plant Cell 32(9): 2806-2822.

       Featured by William Hughes (2020) OsGSK2 integrates jasmonic acid and brassinosteroid signaling in rice. Plant Cell 32: 2669-2670.

  1.  Li X#, Chen Z#, Zhang G#, Lu H#, Qin P, Qi M, Yu Y, Gao Q, Jiao B, Zhao X, Gao Q, Wang H, Wu Y, Ma J, Zhang Y, Wang Y, Deng L, Yao S, Cheng Z, Yu D, Zhu L, Xue Y, Chu C, Li A*, Li S*, Liang C* (2020) Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Sci. China – Life Sci. 63(11): 1688-1702.

  2.  Yin W, Xiao Y, Niu M, Meng W, Li L, Zhang X, Liu D, Zhang G, Qian Y, Sun Z, Huang R, Wang S, Liu C-M, Chu C, and Tong H* (2020)ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. Plant Cell 32(7): 2292-2306.

  3.  Shi Y, Phan H, Liu Y, Cao S, Zhang Z, Chu C, and Schlappi MR (2020) The glycosyltransferase gene OsUGT90A1 helps protect plasma membranes during chilling stress in rice. J. Exp. Bot. 71(9): 2723-2739.

  4.  Cao S#,*, Luo X#, Xue L#, Gao C, Wang D, Holt III BF, Lin H, Chu C, Xia X (2020) The florigen interactor BdES43 represses flowering in the model temperate grass Brachypodium distachyonPlant J. 102: 262-275.

  5.  Meng Y#, Wang Z#, Wang Y, Wang C, Zhu B, Liu H, Ji W, Wen J, Chu C, Tadege M, Niu L, and Lin H* (2019) The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatulaPlant Cell 31(11): 2751-2767.

  Featured by Philip Carella (2018) Mellowed yellow: WHITE PETAL1 regulates carotenoid accumulation in medicago petalsPlant Cell 31: 2556-2557.

  1.  Yang R, Li P, Mei H, Wang D, Sun J, Yang C, Hao L, Cao S, Chu C, Hu S, Song X*, Cao X* (2019) Fine-tuning of miR528 accumulation modulates flowering time in rice. Mol. Plant 12(8): 1103-1113.

Cover Story.

Spotlighted by Chengjie Chen, Yuanlong Liu and Rui Xia (2019) Jack of many trades: The multifaceted role of mir528 in monocots. Mol. Plant 12: 1044-1046.

  1.  Zhang LM#, Leng CY#, Luo H#, Wu XY#, Liu ZQ#, Zhang YM, Zhang H, Xia Y, Shang L, Liu CM, Hao D, Zhou Y, Chu C, Cai HW*, Jing HC* (2018) Sweet sorghum originated through selection of Dry, a plant specific NAC transcription factor gene. Plant Cell 30(10): 2286-2307.

Featured by Emily Breeze (2018)Sweet and juicy: Identification and origins of the dry alleles in sorghum. Plant Cell 30: 2234-2235.

  1.  Kopriva S* and Chu C (2018) Are we ready to improve phosphorus homeostasis in rice? J. Exp. Bot69(15): 3515-3522. (Expert view).

  2.  Pan J, Huang D, Guo Z, Kuang Z, Zhang H, Xie X, Ma Z, Gao S, Lerdau MT, Chu C, Li L (2018) Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J. Integr. Plant Biol60(4): 323-340.

  3.  Hu ZJ#, Lu SJ#, Wang MJ#, He H, Sun L, Wang H, Liu XH, Jiang L, Sun JL, Xin XY, Kong W, Chu C, Xue HW, Yang JS, Luo X*, Liu JX* (2018) A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in riceMol. Plant 11(5): 736-749.

  4. Guo Q#, Wu F, Pang S, Zhao X, Chen L, Liu J, Xue B, Xu G, Li L, Jing H, and Chu C (2018) Crop 3D: a LiDAR based platform for 3D high-throughput crop phenotypingSci. China Life Sci. 61(3): 328-339.

  5.  Qu M, Zheng G, Hamdani S, Essmine J, Song Q, Wang H, Chu C, Sirault X, Zhu XG (2017) Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity panel. Plant Physiol.175(1): 248-258.

  6.  Lu Y, Ye X, Guo R, Huang J, Li G, Tang J, Tan L, Zhu JK, Chu C, and Qian Y (2017) Genome-wide Targeted Mutagenesis in Rice Using CRISPR/Cas9 System. Mol. Plant 10(9): 1242-1245.

Cover story.

Spotlighted by Ning Yang, Rongchen Wang, Yunde Zhao (2017) Revolutionize genetic studies and crop improvement with high-throughput and genome-scale CRISPR/Cas9 gene editing technology. Mol. Plant 10: 1141-1143.

  1.  Schläppi M, Jackson A, Wang A, Chu C, Eizenga G, Shi Y, Shimoyama N, Boykin DL (2017) Assessment of five cold tolerance traits and GWAS mapping in rice using the USDA mini-core collection. Front. Plant Sci. 8: 957.

  2.  Chen J, Nolan T, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y (2017) Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response. Plant Cell 29(6): 1425-1439.

  3.  Wang M#, Wu HJ, Fang J, Chu C, Wang XJ# (2017) A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160. Sci. Bull. 62: 470-475.

Cover Story.

  1.  Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan T, Jiang H, Guo H, Lin HY, Li L, Wang Y, Tong H, Zhang M, Chu C, Li Z, Aluru M, Aluru S, Schnable P, and Yin Y (2017) RD26 mediates crosstalk between drought and brassinosteriod signalling pathways. Nat. Commun. 8: 14573.

  2.  Wu J, Yang R, Yang Z, Zhao S, Yao S, Wang Y, Li P, Song X, Jin L, Zhou T, Xie L, Zhou X, Chu C, Qi Y, Cao X, and Li Y (2017) ROS accumulation and antiviral defence control by microRNA528 in rice. Nat. Plants3: 16203.

  3.  Qu M, Hamdani S, Li W, Wang S, Tang J, Chen Z, Song Q, Li M, Zhao H, Chang T, Chu C, and Zhu XG (2016) Rapid stamatal response to fluctuating light: an under -explored mechanism to improve drought tolerance in rice. Funct. Plant Biol. 43(8): 727-738. 

  4.  Song Q, Chu C, Parry M, and Zhu XG (2016) Genetics-based dynamic systems model of canopy photosynthesis: The key to improve light and resource use efficiencies for crops. Food Energy Secur. 5(1): 18-25.

  5.  Yin CC, Ma B, Collinge D, Pogson B, He SJ, Xiong Q, Duan KX, Chen H, Yang C, Lu X, Wang YQ, Zhang WK, Chu CC, Sun XH, Fang S, Chu JF, Lu TG, Chen SY, and Zhang JS (2015) Differential regulation of ethylene responses in roots and coleoptiles by a carotenoid isomerase MHZ5-mediated abscisic acid pathway in rice. Plant Cell 27(4): 1061-1081.

  6.  Li X, Liu H, Wang M, Liu H, Tian X, Zhou W, Lv T, Wang Z, Chu C, Fang J and Bu Q (2015) Combinations of four heading date genes determine rice adaptability to Heilongjiang province, northern limit of China. J. Integr. Plant Biol. 57(8): 698-707.

  7.  Chen J#, Liu X#, Wang C#, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q, Chu CC, Peng XX, and Zheng HL* (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J. Hazard. Mater. 297: 173-182.

  8.  Hamdani S, Qu M, Xin C, Chu C, Govindjee G, and Zhu X (2015) Variations of photosynthetic parameters in Chinese elite rice revealed by simultaneous measurements of Chlorophyll a fluorescence induction and 820nm transmission signal. J. Plant Physiol. 177: 128-138.

  9.  Su L, Li A, Li H, Chu C, and Qiu JL (2013) Direct modulation of protein level in ArabidopsisMol. Plant6(5): 1711-1714.

  10.  Fan Y, Du K, Gao Y, Kong Y, Chu C, Sokolov V, and Wang Y (2013) Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum. Russ. J. Genet. 49(4): 380-387.

  11.  Wang L, Song X, Gu L, Li X, Cao S, Chu C, Cui X, Chen X, and Cao X (2013) NOT2 proteins promote Pol II-dependent transcription and interact with multiple miRNA biogenesis factors in ArabidopsisPlant Cell 25(2): 715-727.

  12.  Song X, Wang D, Ma L, Chen Z, Li P, Cui X, Liu C, Cao S, Chu C, Tao Y, and Cao X (2012) Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J. 71(3): 378-389.

  13.  Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C, Chu C, Wang XJ, Green PJ, Meyers BC, and Cao X (2012) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J. 69(3): 462-474.

  14. Wu H, Chen C, Du J, Liu H, Yan C, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, and Ling HQ (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol. 158(2): 790-800.

  15. Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, and Wang X (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol. Biol. 80(3): 241-253.

  16.  Jin Y#, Luo Q#, Tong H#, Wang A, Cheng Z, Tang J, Li D, Zhao X, Li X, Wan J, Chu C, and Zhu L (2011) An AT-hook gene is required for palea formation and floral organ number control in rice. Dev. Biol. 359: 277-288.

  17.  Feng J, Cao L, Li J, Duan C, Luo X, Le N, Wei H, Liang S, Chu C, Pan Q, and Tang JL (2011) Involvement of OsNPR1/Nh2 in rice basal resistance to rice blast fungus Magnaporthe oryzaeEur. J. Plant Pathol. 131(2): 221-235.

  18.  Meng X, Qin J, Wang L, Duan G, Sun G, Wu H, Chu C, Ling HQ, Rosen B, and Zhu Y (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol. 191: 49-56.

  19.  Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, and Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol. Biol. 76: 145-156.

  20. Wu X, Zuo S, Chen Z, Zhang Y, Zhu J, Ma N, Tang J, Chu C, and Pan X (2011) Fine mapping of qSTV11TQ, a major gene conferring resistance to rice stripe disease. Theor. Appl. Genet. 122(5): 915-923.

  21.  Qin X, Liu Y, Mao S, Li T, Wu H, Chu C, and Wang Y (2011) Genetic transformation of lipid transfer protein encoding gene in Phalaenopsis amabilis to enhance cold resistance. Euphytica 177: 33-43.

  22.  Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, Xie Q, Jiang X, and Zhu L (2010) The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J. Integr. Plant Biol. 52(7): 626-638.

  23. Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, Li Y, Liang L, Wang Y, Chu C, Guo H, and Xie Q (2010) Up-regulation of LSB1/GDU3 impacts geminivirus infection by activating the salicylic acid pathway. Plant J. 62(1): 12-23.

  24.  Spadaro D, Yun BW, Spoel SH, Chu C, Wang Y, and Loake G (2010) The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol. Plant 138(4): 360-371.

  25. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, and Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41(4): 494-497.

Selected for F1000 Prime. doi: 10.3410/f.1157839.619084. doi: 10.3410/f.1157839.622046.

  1.  Wang Y, Feechan A, Yun BW, Shafiei R, Hofmann A, Taylor P, Xue P, Yang F, Xie Z, Pallas JA, Chu C, and Loake G (2009) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J. Biol. Chem. 284: 2131-2137.

  2.  Zhang Y, Li Y, Gao T, Zhu H, Wang D, Zhang H, Ning Y, Liu L, Wu Y, Chu C, Guo H, and Xie Q (2008) Arabidopsis SDIR1 enhances drought tolerance in crop plants. Biosci. Biotech. Biochem.72: 2251-2254.

  3.  Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, and Li C (2008) Mutation of the rice NARROW LEAF1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol. 147: 1947-1959.

  4.  Hong JK, Yun BW, Kang JG, Raja Mu, Kwon E, Sorhagen K, Chu C, Wang Y, and Loake GJ (2008) Nitric oxide function and signalling in plant disease resistance. J. Exp. Bot.59147-154.

  5.  Dong H, Deng Y, Mu J, Lu Q, Wang Y, Xu Y, Chu C, Chong K, Lu C, and Zuo J (2007) The ArabidopsisSpontaneous Cell Death2 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in photoprotection, chloroplast development and retrograde signaling. Cell Res. 17: 458-470.

  6.  Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X, Chu C, Deng XW, Xue Y, and Cao X (2007) Oryza sativaDicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19: 2705-2718.

  7.  Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zheng D, Gu M, Chu C, and Cheng Z (2006) GOLD HULL AND INTERNODE2 (GH2)encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase (CAD) in Oryza sativaPlant Physiol. 140: 972-983.

  8.  Xiong G, Hu X, Jiao Y, Yu Y, Chu C, Li J, Qian Q, and Wang Y (2006) LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Cell Res.16: 267-276.

  9.  Zhou H, He S, Cao Y, Chen T, Du B, Chu C, Zhang J, and Chen S (2006) OsGLU1, A putative membrane-bound endo-1,4--D-glucanase from rice, affects plant internode elongation. Plant Mol. Biol. 60: 137-151.

  10.  Liu B, Li P, Li X, Liu C, Cao S, Chu Cand Cao X (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in ricePlant Physiol.139: 296-305.

  11.  Junker BH, Chu C, Sonnewald U, Willmitzer L, and Fernie AR (2003) In plants the alc gene expression system responds more rapidly following induction with acetaldehyde than with ethanol. FEBS Lett. 535 (1-3): 136-140.

  12.  Sweetman JP, Chu C, Qu N, Greenland AJ, Sonnewald U, and Jepson I (2002) Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species. Plant Physiol. 129: 943-948.

 

主要授权专利:

1. 储成才陈帅阿尔拜托.马提尼; 一种建立植物基因标签系统的方法.专利号:ZL01118092.7.

2.王义琴储成才, 孙勇如, 陈晨; 培育抗黄萎病转基因棉花的方法及其专用表达载体.专利号:ZL201010146639.2.

3.储成才张振霞史代范.包雷; 烟胺合成酶基因的用途和通过转基因植物提高植物耐逆性的方法.专利号:ZL02150321.4.

4.储成才王义琴刘丰泽, 陈帅;一种维管组织特异表达启动子VSP1及其应用.专利号: ZL201210327687.0.  

5.储成才胡斌, 王威李华张志华车荣会梁成真水稻硝酸盐转运蛋白NRT1.1B在提高植物氮利用效率中的应用专利号: ZL201410495440.9.  

6.唐九友左士敏吴旭江殷文超潘学彪储成才水稻条纹叶枯病抗性基因Stvbi及其应用.专利号:ZL2016100647862.2.

7.储成才刘永强胡斌汪鸿儒;一个调控植物氮素利用效率和产量蛋白质及其应用.专利号: ZL202010965332.9.  

8.储成才,王秋韫,吴耀荣;水稻的一种耐逆相关基因及其编码蛋白与应用.专利号:ZL200410029952.2.

9.储成才李春来一种与水稻产量相关蛋白及其编码基因与应用.专利号: ZL2010178405.6.  

10.储成才高少培方军徐凡王威水稻HOX12基因的应用.专利号: ZL201610157388.5.  

11.储成才司丽珍细胞质型 1,6-二磷酸果糖酶基因启动子及其应用.专利号:ZL02146791.9.

12.储成才白先权一种植物花特异性启动子及其专用重组表达载体和应用.专利号:ZL200810101694.2.

13.储成才童红宁金芸刘文波李峰方军朱立煌一种与植物分蘖数目相关的蛋白及其编码基因与应用.专利号:ZL200810247366.3.

14.王义琴潘学彪储成才抗纹枯病转基因水稻的培育及专用载体.专利号:ZL201210530561.3.

15.储成才刘林川童红宁胡斌梁成真车荣会徐凡水稻BG1蛋白及其编码基因在调节植物生长发育中的应用.专利号:ZL201310343713.3.

16.储成才梁成真;水稻PS1蛋白及其编码基因在调节植物衰老中的应用.专利号:ZL201310400013.3.

17.储成才张联合胡斌一种提高生物体中硒含量的方法.专利号:ZL201310536167.5.

18.储成才王威胡斌李华张志华刘永强水稻 NRT1.1A及其编码蛋白在提高作物产量育种中的应用专利号:ZL201610680206.2.


主要合作品种:

1.秀水114(浙审稻 2009005)培育人:浙江省嘉兴市农业科学研究院、中国科学院遗传与发育生物学研究所浙江嘉兴农作物高新技术育种中心

2.秀水134(浙审稻 2010003;沪审稻 2011005)培育人:嘉兴市农业科学研究院、中国科学院遗传与发育生物学研究所浙江嘉兴农作物高新技术育种中心、余姚市种子管理站

3.秀优207(国审稻 20180118)培育人:浙江嘉兴农业科学研究院,浙江勿忘农种业有限公司,中国科学院遗传与发育生物学研究所浙江嘉兴农作物高新技术育种中心

4.秀优71207(国审稻 20180048)培育人:浙江嘉兴农业科学研究院,浙江勿忘农种业有限公司,中国科学院遗传与发育生物学研究所浙江嘉兴农作物高新技术育种中心

5.秀优5013(绿超稻 201916,科技部重大专项总体组认定品种)培育人:浙江嘉兴市农科院,中国科学院遗传与发育生物学研究所浙江嘉兴农作物高新技术育种中心

6.秀优7113(绿超稻 201917,科技部重大专项总体组认定品种)培育人:浙江嘉兴市农科院,中国科学院遗传与发育生物学研究所浙江嘉兴农作物高新技术育种中心

7.秀优4913(绿超稻 201918,科技部重大专项总体组认定品种)培育人:浙江嘉兴市农科院,中国科学院遗传与发育生物学研究所浙江嘉兴农作物高新技术育种中心


学院简介-
本科生培养-
师资队伍-
学生工作

版权所有©云顶贵宾会员网址(中国)官方指南 备案编号:粤ICP备05008874号

管理登录
Baidu
sogou